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A method is given of obtaining the subsidiary conditions of the second kind of 
the general Gel'fand-Yaglom wave equation based on the representation 
(1/2, 3/2)O(-1/2, 3/2)O(1/2, 5/2)0( -1 /2 ,  5/2)O(1/2, 3/2)| 3/2) 
and in the presence of an external electromagnetic field by reformulating the 
wave equation in spinor form. The wave equations accepting these subsidiary 
conditions form a class defined by a set of simultaneous equations that is not 
empty. 

1. I N T R O D U C T I O N  

Johnson and Sudarshan (1961) discovered that for the spin-3/2 Rari ta-  
Schwinger (1941) wave equation the equal-time commutat ion relations do 
not vanish at spacelike points when the wave equation is minimally coupled 
to an external electromagnetic field. This was a serious flaw for this wave 
equation, since this meant  that the wave equation was not causal, i.e., the 
velocity v of  propagat ion of the solutions of  the wave equation is greater 
than the speed c of  light. 

Thus, A.S. Wightman in 1968 (see Wightman, 1971; Velo and Wight- 
man, 1978) proposed the investigation of the stability of  relativistic wave 
equations. 

In 1969 Velo and Zwanziger (1969a, b) took up again the question of 
causality of  the spin-3/2 Rari ta-Schwinger wave equation in the presence 
of an external electromagnetic field, which they studied classically using 
the method of  characteristics (Courant and Hilbert, 1974) and they found 
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that certain components of the wave equation propagate noncausally even 
for very weak fields. 

These results stimulated studies of the causal behavior of various wave 
equations in the presence of various combinations of external fields 
(Shamaly and Capri, 1972a, b; Baisya, 1970; Nagpal, 1973; Krajcik and 
Nieto, 1976). Most of these works study the propagation of these wave 
equations using the method of characteristics. This method consists in 
converting the original wave equation, which has singular matrices, into a 
new wave equation with nonsingular matrices by using the subsidiary 
conditions of the second kind. Thus, in every case it is essential to be able 
to find these subsidiary conditions. 

2. GEL'FAND-YAGLOM WAVE EQUATION 

Our purpose in this paper is to give a method of finding the subsidiary 
conditions of the second kind of the general Gel'fand-Yaglom wave 
equation (Gel'fand et al., 1963) 

~-0 - - ~ -  ~-1 - - " ~  ~-2 - - ~ -  ~-3"~ - - - ' t -  iK~b = 0 (1) 
OX 0 a X  1 OX, 2 OX 3 

based on the representation 

(�89174189 2, ,2,2, ~ ) | 174  (2) 

with components r interlocking according to the scheme 

1 5 
( ~  2) ~ ,./-2( 

TI 
"F /1  

1 5 (-  ~, ~) ~ § 

( ~ , ~ ) ~  

1 3 - (~, ~) 

-(-~,~)  ~1 1 3 

(3) 

[Our notation is the same as that of Gel'fand et al. (1963).] The canonical 
form of the wave equation (1) with respect to the basis 

"/'1 ~1 0z2 "~2 '/'2 "/" Tt ~.t {~l/'/'l} = { ~ l  . . . . .  ~ . . . . .  ~l  . . . . .  ~l . . . . .  ~'~l . . . . .  ~122,rn2, b~ll 1 ~lll, ml } 
(4) 

11 =1, ml=�89 -1 /2= 3, m2=3,�89 -3 2~ 
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invariant under the complete group, derivable from an invariant Lagrangian, 
and associated with the bilinear form (01, 02) defined by the constants 

a ~,§ = a § = 1, a ~2+2 = a § = - 1 ,  a ~§ = a + ~  = 1 (5) 

is given in Koutroulos (1983). In particular, the matrix 0-o has the block form 

T1 7:1 ~:2 7"2 7"~ 

7"1 t i a 0 i~,/3~ 0 ;q 0 i,~/3 fl  0 y 

n_~/2= +2 iv~ f i  0 e 0 

7"2 x /3 f i  0 e 0 i~/~r 

7"~ \ o ~ o i4~( o 
~'~ 0 i ~ / 3 (  0 0 

+2 7"2 

~3o/2= 7"2~2e 

y ~  

0 

(6) 

where a, fl, % e, ~', and 0 are constants. The constants a, e, and 0 are real 
numbers. For simplicity we introduce the new constants 

b = ix/3fl ,  c = ix /3~,  z = ix/3~, k = ix f3f f  (7) 

3, SPINOR FORM OF THE GEL'FAND-YAGLOM WAVE 
EQUATION 

We shall reformulate the Gel ' fand-Yaglom wave equation in spinor 
language because, as we shall demonstrate below, it is then much easier to 
find the subsidiary conditions of the second kind which are necessary in 
the study of the propagation of the wave equation in the presence of an 
external electromagnetic field, using the method of characteristics. The 
subsidiary conditions of  the first kind can be found easily from the canonical 
form of the wave equation by transforming it with the similarity transforma- 
tion that converts the matrix U-o of the wave equation into its Jordan form 
and selecting those differential equations that do not involve the time 
derivatives, but only the space ones. 

To be able to express the Gel ' fand-Yaglom wave equation (1) in spinor 
form, it is necessary to find the similarity transformation connecting the 
canonical basis {set, m} to the spinor basis 

{c%~, d ~, 6~, b~ ~, co,, %o} (8) 
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where oJ = i, 2; r = 1, 2; v = 1, 2; ~b = i, i ;  co = 1, 2. This t ransformat ion can 
be found as follows. If  

H~, H~_, H~_, D:~, U:~, U:~_, l_~ ( j  = 0, 1, 2, 3) (9) 

are the generators and matrices of  the wave equat ion in the canonical  frame 
and 

s s s s s s s 

are the generators and matrices of  the wave equat ion in the spinor basis, 
then the similarity t ransformat ion -g must be such tht it satisfies the relations 

"~-H ~ - - - 1  = H 3  , s  "]]-H ~_]]---1 __~{+,__ s ~-~..~ c "~---1 ~--. H s  

qru:~l--' =~:L 1-~:~--' = ~_, ~-n:~_~--' = P_ (11) 

r ;lr-' = 

These relations are sufficient to determine ~-. Thus, finding T, it can be 
shown that the general 20-dimensional  Ge l ' f and -Yag lom wave equat ion 
for max imum spin 3 /2  based on the representat ion (2) invariant under  the 
complete  group derivable f rom an invariant Lagrangian and associated with 
the bi l inear form (5) in the presence of  an external  electromagnetic  field 
acquires the following spinor  form: 

- - ' n ' i ,  b~ i -  rq2b}2+2Cvr~el + 2Z~-~T1 +Xa~l = 0 (E l )  

, 7  i 1 ~- i i  ' Li2-�89 + Crr~q + Lrr2y,-~rriaol  

1 i~ i " " - ~r ~b2 + Crq c2 + Zvr~ Ya + X c~ ~2 = 0 (E2) 

i2 i i i i + x o ~ 2  = 0 - 7r2tb2 + 2C7r2c2+ 2Zrr23'2- rr2tb2 (E3) 

_Tr , ib~+2Crr?c ,+eZrr~y ,  ~ - ~1_~bl - ~ X O l l l  = 0 (E4)  

l J_:Z2 l L i 2 - - * - ' ,  2 + ~  2 i ~. i~ 
- - ~ 7 T 2 2 0 1  - - ~ ' / T l i O  2 --vt..~q'/'lC 2 L ,  T T I ' ~ 2 - - ~ ' D ' 2 j O 1  

' ~2,2.~_ CqT~Cl -~ :~ Z ~ 2 " y  1 + XOgl2 = 0 (E5) - - ~ q T I 2 O  2 

- ~'2ib2 - ~'2ib2 +2C~r2c2+ ~Z~2T2+Xa22 = 0 (E6) 
I n  1 ~ i 2  1 ~  2 t _ i i  " " 1 1 L i i  

- -  ~ D q / ' i O  1 - -  ~ D ~ T i  O2 - -  A ~  l 1 Cl _ r qT ' 1 ~/1 - -  ~qTi Ol  

- �89 ~ -  ATr i2 c2 -  r~i2~2 + x d  i = 0 (E7) 

--~IJT',2O 1 - -~DTi ' iO 2 ---,~Tr C 2 - - l ' i 7  T 2 - - ] / ~ ' L r i O  1 

- ~ r t o  2 - . a r t  c~-F~r~-~'y~ + x d  • 0 (E8) 
1 ~-." l t i 2  1 ...- 2 t i i  ~ l i  cx l i  1 r.,- l a i i  

- - ~ / k T ' ~ O  1 - - ~ / ' ~ q ' r i O  2 - - 1 7 T  C 1 - - tT~ ' / r  "~1 - - 3 / ~ 7 / ' i 0 1  

1 r.,'- 2 t i 2  ~ i2  ,--, iv  - -  . i  - g ~ r r ~ o = - i 7 r  c=-e)rr y2 •  = 0  (E9) 
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1 rF  1~5'5 1 r r  2 ~ i ' 5  ~ '52 ,:x '52 1 ~ i  1 L i 5  
- - ~ / ~ 7 ' 5 D  1 - - ~ / ~ 7 i O  2 - - 1 7  C 2 - - ~ ' J ' / "  3 / 2 - - ~ / ~ ' i O 1  

l r 7  2 ~_ "~') __ ~,.D.'51 C1 {~ 7 ' 5 1  
- - 3 1 ~ 7 T 5 0 2  - -  3/1 + X8 ~ = 0 (El0) 

-Ti'a~l-~i2ce~2+2f'rr~di+ezTr~6i+xb]i=o ( E l l )  

1 '52 i i il 5 +Cer~d~+Zer218i_~rr  otn _ ~ .  a 2 2 _ ~ 7  o Q  1 ' " " 1 51 i 

1 i2 2 _ c ~ a S + z 7 ~ 6 ' 5 + x b ~ ' 5 = O  (El2) - -  2 "/'t" o Q 2 - ~  

~2 ~ '5 5 ~ '5 '51 ' 5 -  . '5 '5  - r r  o q 2 + 2 C r q d  +2Zrrx6  (El3) - r r  a l l -eXOl  =0  
i l  i -2CT~di+2z7~6i  i2  i - -  - i i  - -  7/" 0 /12"1-  - -  ~" O / 2 2 - t ' X O  2 = 0  (El4) 

1 22 i 1 i l  ' 5 - - p  i J ' 5 - - , ~  i o ' 5  1 '51 i 
- - ~ 7 T  0 ~ 2 2 - - ~ 7 T  O d 1 2 - i - t . . - 7 2 U - i - / - - . / ) T 2 0 - - ~ q T "  0/12 

1 i2 '5 Crr~2di+ '5 i " - -~77"  0~22 "~ Z ' B ' 2  6 + x b 2 1 2  = 0 (El5) 
- -  ,j.~.520~222 21 5 '5 5 5 '5 5'5 - 7  a 1 2 + 2 C 7 2 d  +2Zrr26 + x b 2  = 0  (El6) 

I n  2 i I n  1 "5 a J i  " I n  1 i 
- -  ~ / ~ 7 / ' i O / 1 2  - - ~ / ~ ' n ' 2 0 ~ 1 1  - - / - 1 7 J ' i l U  - F T r i 1 6 1  - - ~ D ' n ' i O ~ 1 1  

1 2 ") '5 '5 - ~Brr~a12- A71'sd - FIr156 + Xcl = 0 (E17) 
I n  2 i I n  1 2 , t  J ' 5  r e 2  I n  1 i 

- -  ~ 7  i 0~22 - -  ~/J'/7' '50~ 12 - -  -"A'/T'52tg - -  17/7"22 ~ - -  ~ / J T J ' i  Ot 12 

I n  2 ") 
- ~orr'sce22 - Arr2i d i _ F~r2i 6 i + XC2 = 0 (El8) 

l r l  2 i l r7  1 '5 _~Tri ld  i , ~  ~ i  1. . '-  1 i 
- - ~ / ~ 7 7 " i O ~ 1 2 - - ~ / ~ 7 5 0 / 1 1  - -  ~.TVATil O - - ~ / ~ ' / ' / ' i t ~ 1 1  

1 2 '5 - '5 '5 - ~K~r'5oq2 - F~'lsd - Ozr1'56 + XYl = 0 (El9) 
1 2 i 1 1 5 -- 5 5 1 1 i -~KqT"io122-~K.w;2a12-FTr''52d - 0 7 7 ' ' 5 2 3  - ~ K 7 i a 1 2  

1 2 '5 - i i 
- 3 K T r ~ a 2 2 -  FTr2id - @72i 6 +X3/: = 0 (E20) 

where C, Z, B, A, F, K, and | are constants related to the constants, c, z, 
b, ce, 3/, k,.and 0 entering the matrix ~-o by the relations 

c Z z B b A = a  3' 
C 2e '  - 2 e '  2e '  2e '  F = - -  2e '  

k 0 
K 2e '  19=2e (12) 

which amounts to dividing the wave equation (1) throughout by 2e. Note 
that by dividing throughout by 2e we are restricting the block ~_3/2 to having 
nonvanishing eigenvalues, and hence the wave equation will describe spin- 
3/2 particles with or without spin-l /2 particles present, depending on the 
eigenvalues of the block ~_U ~. A bar above a quantity indicates its complex 
conjugate. ~-~p (o-= 1, 2;/5 = i, 2) are the electromagnetic spinor com- 
ponents connected to the four momentum electromagnetic vector com- 
ponents ~-~ ( r = 0 ,  1, 2, 3) by the formulas 

7T i I ---- - -  77"0 -1- 7 3 ,  ~ 5 1  = -'/7"1 -}- i 7 2 ,  77" i2  = 77"1 - -  i'/7"2, ~ 2 2  --= - -  7 0  - -  7 3  

(13) 
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X = K/2e is a constant related to the masses of the particles associated with 
the field, i = ~ 2 ] .  (The free field wave equation follows from the above one 
for zero electromagnetic four-vector potential.) 

We notice that if the constants (12) have the values 

n - 1  - ~ ,  C = - � 8 9  A = - � 8 9  Z = K  = O = F = 0  (14) 

then the above wave equation goes over into the spinor form of the Pauli- 
Fierz wave equation for spin 3/2 (Fierz and Pauli, 1939; Gupta, 1954). 

4. SUBSIDIARY CONDITIONS 

We next find the class of all those 20-dimensional wave equations with 
maximum spin-3/2 accepting subsidiary conditions of the second kind. For 
this let us multiply equation (E l i )  by Arr], (El2) by ATr 1, (El4) by A~'~, 
and (El5) by ATr ] and add, 

A1r~ x (El 1) + A~r~ • (E12) + A~r~ x (El4) + Arr~ • (El5) = 0 (15) 

where A is a constant to be determined. Similarly, let us multiply (El7) by 
3~:Ir i~, (El8) by 3~:7r 2i, (El9) by 3~fl  i, and (E20) and 3~rr 2i and add, 

3~:rrai x (E17)+3~:~r2i x (E18)+3~:Trai x (E19)+3~r  2i x (E20) = 0  (16) 

where ~ is a constant to be determined. Subtracting (16) from (15), we have 

A{rr] x (E l l )  + ~r~ x (E l2 )+  ~r~ x (El4) + 7r~ x (El5)} 

- 3~:{rrli(E17) + ~r2i x (El8) + ~ria x (El9) + ~r2i • (E20)} = 0 (17) 

Substituting into (17) 

- 6X  x (E7) - /z6X x (E9) (18) 

(where Iz is a constant to be determined), having imposed the conditions 

2B +2K/ ,  =A, 2A+ 2['/z = - ~ ,  2F +2| = - s  c (19) 

replacing ~r~o by the relations (13), and imposing the condition 

- l a  + (B + K)~  = 0 (20) 

in order to create terms involving [~-p, ~rq] = ieFpq =fpq (where Fpq, p, q = 
0, 1, 2, 3, is the electromagnetic tensor), and finally imposing the conditions 

31C - 3 ~ ( A + F ) = 0 ,  3 1 Z - 3 ~ ( F +  @)=0 (21) 

in order to make terms involving (~rr) 2, r = 0, 1, 2, 3, vanish, we obtain the 
following subsidiary condition of the second kind: 

6x2d i + 6txx28i + A (flo +f,3 +/f32 +/fo2) a ~1-1- 21 (f03 +/f12) O~2 

+ [1C + 3~:(A + F)](/f~2 +f3o)d i + [AZ + 3~(F + | ] (/f~2 +f30)B i 

+ [1C + 3~:(A + P)] (f~o +/f2o +f~3 +/f23) d~ + [AZ + 3~(F + O)] 

X (flo +f13 +/f20 +/f23)a2+ 1 (foi +/f02 +/f23 +f13) 0~i2 = 0 (22) 
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By similar operations to the above, three more subsidiary conditions 
of the second kind can be obtained. For the second subsidiary condition 
we perform the following operations: 

A{vr~ x (El2) + 7r~ x (E l3 )  + zr~ • (E l5)  + r x (El6)} 

- 3({~r 1~ • (E l7 )  + zr 2~ x (E l8 )  + 7r l~ x (E l9 )  + ~r 2~ x (E20)} = 0 (23) 

Substituting into this relation the expression 

- 6X  • (E8) - / z 6 X  • (E l0)  (24) 

and imposing the conditions (19)-(21),  we obtain the subsidiary condition 

6x2d 2 + ;z 6X26 ~ + h (f~o +f~3 + ifo2 + if32)a~, 

+ [AC + 3 ~(A + F)](f lo  + ifo2 +f31 +/f23) di  

+ [hz  + 3~(r + O)] (flo +/fo2 "l-f31 -b if23) ~i 

+ 2A ( if12 + fo3)a~2 + [ A C + 3~( A + F) ]( if21+ fo3)d ~ 

+ [ a z  + 3~(r+ o)](/f2, +fo3) ~ ~ 

+ l (fol +/fo2 +f~3 +/f23) o~2 = 0 (25) 

For  the third subsidiary condition we per form the following operations: 

h{~ l  x (El )  + ~ x (E2) + ,,'r,~ x (E4) + ~ x (E5)} 

- 3~{7ril x (E7) + ~'~lX (E8) + zril x (E9) + r x (Elo)} = 0 (26) 

Substituting into this relation the expression 

- 6 X  x (El7)  - /z6 ,g  x (El9)  

and imposing again the conditions (19)-(21), we obtain the subsidiary 
condition 

-6XZca +/.z 6xZT1 + a (flo ~-f31 -~- /f02 -~- /f23)b~ i + 2A (/f21 "+fo3) bl "5 

+ [AC + 3~:(A + P)] (/f12"l-f03) Cl 

+ [; tz  + 3~,(r + o)  1 ( ~  +A~) w 

+ [(AC + 3~(A + F)](f01 +/fo2 q-/f23 +f13)c2 

+ [AZ + 3~(F + O)](fol  +/f02 +f13 +/f23) Y2 

+ A (foi +/fo2 +f3l  +/f32) b~ ~ = 0 (27) 
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For the fourth subsidiary condition we perform the following 
operations: 

A{zrl x (E2)+ zr2 x (E3) + 1 2 ~ x (E5) + 7r~ x (E6)} 

-3~{zr2ix(E7)+Tr22x(ES)+Tr2i• (28) 

Substituting into this relation the expression 

-6X x (E18) - /z6X • (E20) (29) 

and imposing the conditions (19)-(21) we obtain the subsidiary condition 

6X2C2 + 6/xX2 y2 + A (flo +f3, + ifo2 +/f23) b i i  

+ [AC + 3~:(a + F)](fol + ifoz+f31 +/f23)Cl 

+ [ a z  + 3r + O)](f0, +f3, +/f2o +/f23) YI 

- 2X (fo3 +/f2,) b~ ~ + [3`C + 3~:(A + l~)](/f2, +f3o) e2 

+ [3`Z + 3sC(F + O)](/f2, +f3o)Y2 

+ 3. (fro +/fo2 +f3, + if32) b~ 2 = 0 (30) 

Thus, if the constants entering the general 20-dimensional wave 
equation (1) are such that the relations (19)-(21) are satisfied simul- 
taneously, then the wave equation accepts subsidiary conditions of the 
second kind given above, i.e., involving the field components fpq. These 
relations define a class of  20-dimensional wave equations that is not empty. 
Examples belonging to it are given below. 

E X A M P L E S  

We give now examples of wave equations for which one can find the 
subsidary conditions of the second kind as described above. 

Example i. If the constants ~:, /z, and 3. have the values ~: = 1, /z = 1, 
and A = x/2 and the constants entering the wave equation have the values 

1 1 1 1 1 
B = - - - -  C -  Z -  K =  A = - -  

2x/2' 2x/-2 ' 2v/2 ' 2v/2 ' 4 
(31) 

1 1 
o 4' x r  

the set of simultaneous equations (19)-(21) is satisfied and a spin-3/2 
Gel ' fand-Yaglom wave equation is defined whose matrix 0-0 has in the 
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canonical basis the blocks 

7"1 ~:1 ~:2 r2 r~ ~ 
rl 0 _1 0 1/2,,/2 0 - a  

~1 1 0 1 / 2 V / 2  0 1 0 

1 L~/2 = ~:2 - 1 / 2 v ~  0 ~ 0 - 1/2,,/2 

r2 -1/2x/2  0 ~ 0 - 1 / 2 v ~  0 

r~ -�88 0 1/2v~ 0 _1 
�9 ! 1 r~ 0 1/2x/2 0 -~  0 

"/~2 "/'2 

(32) 

Notice that the eigenvalues of the block L~/2 are all zero and hence the 
corresponding wave equation describes spin-3/2 particles. The matrix Lo 
satisfies the minimal equation 

L2[L 2 -  1] = 0 (33) 

The charge associated with the wave equation is definite. Notice that the 
matrix Lo has det Lo--0, i.e., is singular. 

Example 2. A second example of a 20-dimensional Gel ' fand-Yaglom 
wave equation accepting subsidiary conditions of the second kind arises if 
the constants have the values 

1 1 1 
~ =1 ,  / , = 1 ,  a = q ~ ,  B -  2V~, C = - 2 v ~ ,  Z = -2 - -  ~ 

1 1 
K - 2x/2' A = O = 0, r = - ~  (34) 

In this case the resulting wave equation describes spin-3/2 particles together 
with spin- l /2  particles (since the eigenvalues of the block L~/2 are not all 
zero). Lo satisfies the minimal equation 

2 2 Lo[Lo- (�89 ElL g - 1] = 0 (35) 

Example 3. A third example occurs if the constants have the values 

1 1 1 
sO=l, t , = 1 ,  A =~/2, B = 2v/~ , C = - 2---~, Z = - 2---- ~ 

1 1 1 
K = 2x/2' A =  - ~ ,  |  F = 0  (36) z 
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This  e x a m p l e  a g a i n  desc r ibes  two k inds  o f  par t ic les ,  n a m e l y  s p i n - 3 / 2  a n d  
s p i n - l / 2  par t ic les ,  fl-o satisfies the  m i n i m a l  e q u a t i o n  

2 2 1_o[0_ ~  (�89 [n_~- 1] = 0 (37) 
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